Comparison study of magnetic flux ropes in the ionospheres of Venus, Mars and Titan
نویسندگان
چکیده
0019-1035/$ see front matter 2009 Elsevier Inc. A doi:10.1016/j.icarus.2009.03.014 * Corresponding author. Address: 6862 Slichter Hal Angeles, 595 Charles E. Young Drive East, Los Angeles E-mail address: [email protected] (H.Y. Wei). Magnetic flux ropes are created in the ionosphere of Venus and Mars during the interaction of the solar wind with their ionospheres and also at Titan during the interaction of the Saturnian magnetospheric plasma flow with Titan’s ionosphere. The flux ropes at Venus and Mars were extensively studied from Pioneer Venus Orbiter and Mars Global Surveyor observations respectively during solar maximum. Based on the statistical properties of the observed flux ropes at Venus and Mars, the formation of a flux rope in the ionosphere is thought first to arise near the boundary between the magnetic barrier and the ionosphere and later to sink into the lower ionosphere. Venus flux ropes are also observed during solar minimum by Venus Express and the observations of developing and mature flux ropes are consistent with the proposed mechanism. With the knowledge of flux rope structure in the Venus ionosphere, the twisted fields in the lower ionosphere of Titan from Cassini observations are studied and are found to resemble the Venus flux ropes. 2009 Elsevier Inc. All rights reserved.
منابع مشابه
Stationary flux ropes at the southern terminator of Mars
[1] Flux ropes have long been observed in the upper atmosphere of Venus and more recently at Mars. Here we present magnetic field measurements of flux ropes encountered at the southern terminator of Mars by Mars Global Surveyor and compare them to a flux rope model. This allows several parameters of each rope to be inferred. Remarkably similar flux ropes are met repeatedly at the southern termi...
متن کاملGiant flux ropes observed in the magnetized ionosphere at Venus
[1] The Venus ionospheric response to solar and solar wind variations is most evident in its magnetic field properties. Early Pioneer Venus observations during the solar maximum revealed that the Venus ionosphere exhibits two magnetic states depending on the solar wind dynamic pressure conditions: magnetized ionosphere with large-scale horizontal magnetic field; or unmagnetized ionosphere with ...
متن کاملThree-dimensional finite difference time domain modeling of the Schumann resonance parameters on Titan, Venus, and Mars
[1] The conducting ionosphere and conducting surface of Titan, Venus, and Mars form a concentric resonator, which would support the possibility of the existence of global electromagnetic resonances. On Earth, such resonances are commonly referred to as Schumann resonances and are excited by lightning discharges. The detection of such resonances on other planets would give a support for the exis...
متن کاملModeling of Venus, Mars, and Titan
Increased computer capacity has made it possible to model the global plasma and neutral dynamics near Venus, Mars and Saturn’s moon Titan. The plasma interactions at Venus, Mars, and Titan are similar because each possess a substantial atmosphere but lacks a global internally generated magnetic field. In this article three self-consistent plasma models are described: the magnetohydrodynamic (MH...
متن کاملAtmospheric acoustics of Titan, Mars, Venus, and Earth
Planetary atmospheres are complex dynamical systems whose structure, composition, and dynamics intimately affect the propagation of sound. Thus, acoustic waves, being coupled directly to the medium, can effectively probe planetary environments. Here we show how the acoustic absorption and speed of sound in the atmospheres of Venus, Mars, Titan, and Earth (as predicted by a recent molecular acou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010